skip to main content


Search for: All records

Creators/Authors contains: "Ren, Kui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We study an inverse problem for a coupled system of semilinear Helmholtz equations where we are interested in reconstructing multiple coefficients in the system from internal data measured in applications such as thermoacoustic imaging. The system serves as a simplified model of the second harmonic generation process in a heterogeneous medium. We derive results on the uniqueness and stability of the inverse problem in the case of small boundary data based on the technique of first- and higher-order linearization. Numerical simulations are provided to illustrate the quality of reconstructions that can be expected from noisy data.

     
    more » « less
  2. Top-k frequent items detection is a fundamental task in data stream mining. Many promising solutions are proposed to improve memory efficiency while still maintaining high accuracy for detecting the Top-k items. Despite the memory efficiency concern, the users could suffer from privacy loss if participating in the task without proper protection, since their contributed local data streams may continually leak sensitive individual information. However, most existing works solely focus on addressing either the memory-efficiency problem or the privacy concerns but seldom jointly, which cannot achieve a satisfactory tradeoff between memory efficiency, privacy protection, and detection accuracy.

    In this paper, we present a novel framework HG-LDP to achieve accurate Top-k item detection at bounded memory expense, while providing rigorous local differential privacy (LDP) protection. Specifically, we identify two key challenges naturally arising in the task, which reveal that directly applying existing LDP techniques will lead to an inferior accuracy-privacy-memory efficiency tradeoff. Therefore, we instantiate three advanced schemes under the framework by designing novel LDP randomization methods, which address the hurdles caused by the large size of the item domain and by the limited space of the memory. We conduct comprehensive experiments on both synthetic and real-world datasets to show that the proposed advanced schemes achieve a superior accuracy-privacy-memory efficiency tradeoff, saving 2300× memory over baseline methods when the item domain size is 41,270. Our code is anonymously open-sourced via the link.

     
    more » « less
    Free, publicly-accessible full text available March 12, 2025
  3. Free, publicly-accessible full text available January 1, 2025
  4. Physically unclonable hardware fingerprints can be used for device authentication. The photo-response non-uniformity (PRNU) is the most reliable hardware fingerprint of digital cameras and can be conveniently extracted from images. However, we find image post-processing software may introduce extra noise into images. Part of this noise remains in the extracted PRNU fingerprints and is hard to be eliminated by traditional approaches, such as denoising filters. We define this noise as software noise, which pollutes PRNU fingerprints and interferes with authenticating a camera armed device. In this paper, we propose novel approaches for fingerprint matching, a critical step in device authentication, in the presence of software noise. We calculate the cross correlation between PRNU fingerprints of different cameras using a test statistic such as the Peak to Correlation Energy (PCE) so as to estimate software noise correlation. During fingerprint matching, we derive the ratio of the test statistic on two PRNU fingerprints of interest over the estimated software noise correlation. We denote this ratio as the fingerprint to software noise ratio (FITS), which allows us to detect the PRNU hardware noise correlation component in the test statistic for fingerprint matching. Extensive experiments over 10,000 images taken by more than 90 smartphones are conducted to validate our approaches, which outperform the state-of-the-art approaches significantly for polluted fingerprints. We are the first to study fingerprint matching with the existence of software noise. 
    more » « less
  5. Free, publicly-accessible full text available August 31, 2024
  6. Free, publicly-accessible full text available August 4, 2024
  7. The increasing demand for data-driven machine learning (ML) models has led to the emergence of model markets, where a broker collects personal data from data owners to produce high-usability ML models. To incentivize data owners to share their data, the broker needs to price data appropriately while protecting their privacy. For equitable data valuation , which is crucial in data pricing, Shapley value has become the most prevalent technique because it satisfies all four desirable properties in fairness: balance, symmetry, zero element, and additivity. For the right to be forgotten , which is stipulated by many data privacy protection laws to allow data owners to unlearn their data from trained models, the sharded structure in ML model training has become a de facto standard to reduce the cost of future unlearning by avoiding retraining the entire model from scratch. In this paper, we explore how the sharded structure for the right to be forgotten affects Shapley value for equitable data valuation in model markets. To adapt Shapley value for the sharded structure, we propose S-Shapley value, a sharded structure-based Shapley value, which satisfies four desirable properties for data valuation. Since we prove that computing S-Shapley value is #P-complete, two sampling-based methods are developed to approximate S-Shapley value. Furthermore, to efficiently update valuation results after data owners unlearn their data, we present two delta-based algorithms that estimate the change of data value instead of the data value itself. Experimental results demonstrate the efficiency and effectiveness of the proposed algorithms. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  8. Shapley value provides a unique way to fairly assess each player's contribution in a coalition and has enjoyed many applications. However, the exact computation of Shapley value is #P-hard due to the combinatoric nature of Shapley value. Many existing applications of Shapley value are based on Monte-Carlo approximation, which requires a large number of samples and the assessment of utility on many coalitions to reach high quality approximation, and thus is still far from being efficient. Can we achieve an efficient approximation of Shapley value by smartly obtaining samples? In this paper, we treat the sampling approach to Shapley value approximation as a stratified sampling problem. Our main technical contributions are a novel stratification design and two sample allocation methods based on Neyman allocation and empirical Bernstein bound, respectively. Experimental results on several real data sets and synthetic data sets demonstrate the effectiveness and efficiency of our novel stratification design and sampling approaches. 
    more » « less
    Free, publicly-accessible full text available May 26, 2024